大学数学

写像.12 商集合の普遍性

商集合の普遍性

商集合を普遍性によって特徴付けます。


◆Prop.SetTop.3.12.1. (商集合の普遍性)

X,Z を集合、\sim X 上の同値関係、f \colon X \rightarrow Z を写像とする。また、\pi \colon X \rightarrow X/{\sim} を商写像とする。
このとき、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在するための必要十分条件は、x \sim y ならば f(x)=f(y) が成り立つことである。

すなわち、x \sim y ならば f(x)=f(y) が成り立つとき、またそのときに限り、次の図式を可換にする \tilde{f} がただ一つ存在する。

\xymatrix{ X  \ar[d]_{\pi} \ar[dr]^{f} \\ X/{\sim}  \ar[r]_{\exists! \tilde{f}} & Z  }

さらに、f(x)=f(y) ならば x \sim y が成り立つとき、 \tilde{f} は単射である。


■Prf.

x \sim y ならば f(x)=f(y) が成り立つとき、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在することを示す。

まず、写像 \tilde{f} の存在を示そう。任意の [x] \in X/{\sim} に対し、 \tilde{f}([x])=f(x) と定めると、f= \tilde{f} \circ \pi となる。

ただし、 \tilde{f} の定義は見た目上 [x] の代表元 x の取り方に依存しているように見える。そこで、[x]=[y] のとき f(x)=f(y) であることを示し、写像 \tilde{f} がwell-definedであることを示そう。

[x]=[y] のとき、x \sim y であるから、f(x)=f(y) が成り立つ。よってwell-definedである。

写像 \tilde{f} がただ一つであることを示す。他の写像 g \colon X/{\sim} \rightarrow Zf= g \circ \pi を満たすとき、g=\tilde{f} を示す。

f= g \circ \pi より、任意の x \in X に対して、f(x)= g([x]) となるから、 g=\tilde{f} である。

逆に、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在するとき、x \sim y ならば f(x)=f(y) が成り立つことを示す。

x \sim y ならば [x]=[y] であるから、f= \tilde{f} \circ \pi より、f(x)=\tilde{f}([x])=\tilde{f}([y])=f(y) である。

さらに、f(x)=f(y) ならば x \sim y が成り立つとして、 \tilde{f} が単射であることを示す。

 \tilde{f}([x])= \tilde{f}([y]) とすると、f= \tilde{f} \circ \pi より、f(x)=\tilde{f}([x])=\tilde{f}([y])=f(y) である。

したがって仮定より x \sim y であるから、[x]=[y]
よって、 \tilde{f} は単射である。

以上から、示された。 □


さて、集合 X 上の同値関係をわかりやすく \sim_{X} で表し、集合 Y 上の同値関係を   \sim_{Y} で表します。

Prop.SetTop.3.12.1.において Z = Y/{\sim_{Y}} とし、f としては \pi_{Y} \circ f を考えます。ただし、 \pi_{Y} \colon Y \rightarrow Y/{\sim_{Y}} は商写像です。

このとき、Prop.SetTop.3.12.1.における f(x)=f(y) という条件は、(\pi_{Y} \circ f)(x)=(\pi_{Y} \circ f)(y)、すなわち [f(x)]_{Y}=[f(y)]_{Y} となるので、つまり f(x) \sim_{Y} f(y) となります。

したがって、Prop.SetTop.3.12.1.を適用すると次の系を得ます。


◆Cor.SetTop.3.12.2.

X,Y を集合、\sim_{X},\sim_{Y} をそれぞれ X,Y 上の同値関係とし、f \colon X \rightarrow Y を写像とする。また、\pi_{X} \colon X \rightarrow X/{\sim_{X}},\pi_{Y} \colon Y \rightarrow Y/{\sim_{Y}} を商写像とする。

このとき、写像 \tilde{f} \colon X/{\sim_{X}} \rightarrow Y/{\sim_{Y}} で、\pi_{Y} \circ f = \tilde{f} \circ \pi_{X} を満たすものがただ一つ存在するための必要十分条件は、x \sim_{X} y ならば f(x) \sim_{Y} f(y) が成り立つことである。

図式で表すと次のようになる。

\xymatrix{ X \ar[r]^{f}  \ar[d]_{\pi_{X}} & Y \ar[d]^{\pi_{Y}} \\  X/{\sim_{X}} \ar[r]^{\exists! \tilde{f}} & Y/{\sim_{Y}} }

さらに、f(x) \sim_{Y} f(y) ならば x \sim_{X} y が成り立つとき、\tilde{f} は単射である。


Cor.SetTop.3.12.2.は元の集合における写像を商集合における写像に置き換えて考えることができる必要十分条件を示しており、ときに有用です。

関連記事

  1. 大学数学

    集合.15 集合の演算

    集合の演算ここまで、べき集合、和集合、補集合、差集合、共通集合…

  2. 大学数学

    集合.18 集合の濃度.3 連続体濃度を持つ集合

    非可算集合可算濃度 \( \aleph_0 \) よりも濃度が…

  3. 大学数学

    集合.21 上界、下界、上限、下限、最大元、最小元、極大元、極小元

    上界、下界、上限、下限、最大元、最小元、極大元、極小元整列可能…

  4. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)

    ルベーグ積分大学1、2年生でやってきた積分はリーマン積分と言い…

  5. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

  6. 大学数学

    論理記号.1 よく使う論理記号一覧、命題

    論理記号とは~数学を記述する上での基本言語~数学においてよく使…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    写像.5 像と逆像に関する演算
  2. 大学数学

    写像.7 全射の性質
  3. 大学数学

    集合.22 整列可能定理、超限帰納法
  4. 大学数学

    集合.13 同値類と集合の分割
  5. 大学数学

    集合.10 直和(非交和、無縁和)
PAGE TOP
error: Content is protected !!