大学数学

写像.12 商集合の普遍性

商集合の普遍性

商集合を普遍性によって特徴付けます。


◆Prop.SetTop.3.12.1. (商集合の普遍性)

X,Z を集合、\sim X 上の同値関係、f \colon X \rightarrow Z を写像とする。また、\pi \colon X \rightarrow X/{\sim} を商写像とする。
このとき、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在するための必要十分条件は、x \sim y ならば f(x)=f(y) が成り立つことである。

すなわち、x \sim y ならば f(x)=f(y) が成り立つとき、またそのときに限り、次の図式を可換にする \tilde{f} がただ一つ存在する。

\xymatrix{ X  \ar[d]_{\pi} \ar[dr]^{f} \\ X/{\sim}  \ar[r]_{\exists! \tilde{f}} & Z  }

さらに、f(x)=f(y) ならば x \sim y が成り立つとき、 \tilde{f} は単射である。


■Prf.

x \sim y ならば f(x)=f(y) が成り立つとき、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在することを示す。

まず、写像 \tilde{f} の存在を示そう。任意の [x] \in X/{\sim} に対し、 \tilde{f}([x])=f(x) と定めると、f= \tilde{f} \circ \pi となる。

ただし、 \tilde{f} の定義は見た目上 [x] の代表元 x の取り方に依存しているように見える。そこで、[x]=[y] のとき f(x)=f(y) であることを示し、写像 \tilde{f} がwell-definedであることを示そう。

[x]=[y] のとき、x \sim y であるから、f(x)=f(y) が成り立つ。よってwell-definedである。

写像 \tilde{f} がただ一つであることを示す。他の写像 g \colon X/{\sim} \rightarrow Zf= g \circ \pi を満たすとき、g=\tilde{f} を示す。

f= g \circ \pi より、任意の x \in X に対して、f(x)= g([x]) となるから、 g=\tilde{f} である。

逆に、写像 \tilde{f} \colon X/{\sim} \rightarrow Z で、f= \tilde{f} \circ \pi を満たすものがただ一つ存在するとき、x \sim y ならば f(x)=f(y) が成り立つことを示す。

x \sim y ならば [x]=[y] であるから、f= \tilde{f} \circ \pi より、f(x)=\tilde{f}([x])=\tilde{f}([y])=f(y) である。

さらに、f(x)=f(y) ならば x \sim y が成り立つとして、 \tilde{f} が単射であることを示す。

 \tilde{f}([x])= \tilde{f}([y]) とすると、f= \tilde{f} \circ \pi より、f(x)=\tilde{f}([x])=\tilde{f}([y])=f(y) である。

したがって仮定より x \sim y であるから、[x]=[y]
よって、 \tilde{f} は単射である。

以上から、示された。 □


さて、集合 X 上の同値関係をわかりやすく \sim_{X} で表し、集合 Y 上の同値関係を   \sim_{Y} で表します。

Prop.SetTop.3.12.1.において Z = Y/{\sim_{Y}} とし、f としては \pi_{Y} \circ f を考えます。ただし、 \pi_{Y} \colon Y \rightarrow Y/{\sim_{Y}} は商写像です。

このとき、Prop.SetTop.3.12.1.における f(x)=f(y) という条件は、(\pi_{Y} \circ f)(x)=(\pi_{Y} \circ f)(y)、すなわち [f(x)]_{Y}=[f(y)]_{Y} となるので、つまり f(x) \sim_{Y} f(y) となります。

したがって、Prop.SetTop.3.12.1.を適用すると次の系を得ます。


◆Cor.SetTop.3.12.2.

X,Y を集合、\sim_{X},\sim_{Y} をそれぞれ X,Y 上の同値関係とし、f \colon X \rightarrow Y を写像とする。また、\pi_{X} \colon X \rightarrow X/{\sim_{X}},\pi_{Y} \colon Y \rightarrow Y/{\sim_{Y}} を商写像とする。

このとき、写像 \tilde{f} \colon X/{\sim_{X}} \rightarrow Y/{\sim_{Y}} で、\pi_{Y} \circ f = \tilde{f} \circ \pi_{X} を満たすものがただ一つ存在するための必要十分条件は、x \sim_{X} y ならば f(x) \sim_{Y} f(y) が成り立つことである。

図式で表すと次のようになる。

\xymatrix{ X \ar[r]^{f}  \ar[d]_{\pi_{X}} & Y \ar[d]^{\pi_{Y}} \\  X/{\sim_{X}} \ar[r]^{\exists! \tilde{f}} & Y/{\sim_{Y}} }

さらに、f(x) \sim_{Y} f(y) ならば x \sim_{X} y が成り立つとき、\tilde{f} は単射である。


Cor.SetTop.3.12.2.は元の集合における写像を商集合における写像に置き換えて考えることができる必要十分条件を示しており、ときに有用です。

関連記事

  1. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像

    集合の準同型定理Prop.SetTop.3.12.1.を応用す…

  2. 大学数学

    集合.7 積集合(n個の場合)

    積集合( \(n \) 個の場合)例えば、\( x,y \in…

  3. 大学数学

    写像.7 全射の性質

    全射の性質全射であることを同値な条件で言い替えることで特徴付け…

  4. 大学数学

    集合.9 積集合(一般の場合)

    積集合(一般の場合)準備はできましたので、一般の集合族 \( …

  5. 大学数学

    集合.3 補集合、差集合

    補集合集合 \( A \) は全体集合 \( X \) の部分…

  6. 大学数学

    論理記号.5 論理演算

    論理演算前回までで一通りよく使う論理記号については押さえました…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像
  2. 大学数学

    論理記号.2 否定、かつ、または、~ならば、同値記号
  3. 大学数学

    論理記号.6 否定の作り方
  4. 大学数学

    集合.14 商集合
  5. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)
PAGE TOP
error: Content is protected !!