大学数学

写像.5 像と逆像に関する演算

像と逆像に関する演算

ここでは、像と逆像に関する演算についてまとめておきます。


◆Prop.SetTop.3.5.1.

f \colon X \rightarrow Y を写像、A,B \subset X とし、U,V \subset Y とする。
また、I を添字の集合、(A_i)_{i \in I} を各 i につき A_i \subset X であるような集合族、(U_i)_{i \in I} を各 i につき U_i \subset Y であるような集合族とする。

  1.  f(A \cap B) \subset f(A) \cap f(B)
  2.  f(A \cup B) = f(A) \cup f(B)
  3.  f^{-1}(U \cap V) = f^{-1}(U ) \cap f^{-1}(V)
  4.  f^{-1}(U \cup V) = f^{-1}(U ) \cup f^{-1}(V)
  5.  f(A) \subset U  \Leftrightarrow A \subset f^{-1}(U)
  6.  A \subset f^{-1}( f(A))
  7.  f(f^{-1}(U)) \subset U
  8.  A \subset B \Rightarrow f(A) \subset f(B)
  9.  U \subset V \Rightarrow f^{-1}(U) \subset f^{-1}(V)
  10.  f^{-1}( U \verb|\| V ) = f^{-1}(U) \verb|\| f^{-1}(V) 特に  f^{-1}( Y \verb|\| U ) = X \verb|\| f^{-1}(U)
  11.  (f|_{A})^{-1}(U)= A \cap f^{-1}(U)
  12.  f( \bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)
  13.   f( \bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)
  14.  f^{-1}( \bigcap_{i \in I} U_i) = \bigcap_{i \in I} f^{-1}(U_i)
  15.   f^{-1}( \bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i)

■Prf.

1.

8.を示せば、 f(A \cap B) \subset f(A) および  f(A \cap B) \subset f(B) が成り立つことからただちにしたがう。

2.

8.を示せば、f(A \cup B) \supset f(A) および f(A \cup B) \supset f(B) が成り立つから、f(A \cup B) \supset f(A) \cup f(B) である。

また、y \in f(A \cup B) をとると、定義よりある x \in A \cup B が存在して y=f(x) とかける。ここで、x \in A のとき f(x) \in f(A)x \in B のとき f(x) \in f(B) であるから、y=f(x) \in f(A) \cup f(B)
したがって、f(A \cup B) \subset f(A) \cup f(B)
よって示された。

3.

    \begin{align*} f^{-1}(U \cap V) &= \{ x \in X \mid f(x) \in U \cap V \} \\ &= \{ x \in X \mid f(x) \in U \land f(x) \in V \} \\ &= \{ x \in X \mid x \in f^{-1}(U) \land x \in f^{-1}(V) \} \\ &= f^{-1}(U ) \cap f^{-1}(V) \end{align*}

4.

    \begin{align*} f^{-1}(U \cup V) &= \{ x \in X \mid f(x) \in U \cup V \} \\ &= \{ x \in X \mid f(x) \in U \lor f(x) \in V \} \\ &= \{ x \in X \mid x \in f^{-1}(U) \lor x \in f^{-1}(V) \} \\ &= f^{-1}(U ) \cup f^{-1}(V) \end{align*}

5.

\Rightarrow を示す。
x \in A のとき、f(x) \in f(A) \subset U であるから、x \in f^{-1}(U) である。
\Leftarrow を示す。
y \in f(A) とすると、ある x \in A が存在して y=f(x) とかける。A \subset f^{-1}(U) であるから、x \in f^{-1}(U) であり、y=f(x) \in U である。

6.

x \in A のとき f(x) \in f(A) だから x \in f^{-1}(f(A))

7.

y \in f(f^{-1}(U)) とすると、ある x \in f^{-1}(U) が存在して、y=f(x) とかける。x \in f^{-1}(U) だから、y=f(x) \in U である。

8.

y \in f(A) をとると、ある x \in A が存在して、y=f(x) とかける。ここで、A \subset B であるから、x \in B
よって、y=f(x) \in f(B) である。

9.

x \in f^{-1}(U) をとると、f(x) \in U \subset V だから x \in f^{-1}(V)

10.

    \begin{align*} f^{-1}( U \backslash V ) &= \{ x \in X \mid f(x) \in U \backslash V \} \\ &= \{ x \in X \mid f(x) \in U \land f(x) \notin V \} \\ &= \{ x \in X \mid x \in f^{-1}(U) \land x \notin f^{-1}(V) \} \\ &= f^{-1}(U ) \backslash f^{-1}(V) \end{align*}

特に、x \in X のとき f(x) \in Y であり、かつ f^{-1}(Y) は定義よりX の部分集合であるから、f^{-1}(Y)=X
これに上の式を適用して  f^{-1}( Y \verb|\| U ) = X \verb|\| f^{-1}(U) を得る。

11.

\subset を示す。
f|_{A}A から Y への写像であるから、逆像の定義より  (f|_{A})^{-1}(U) \subset A である。また、x \in (f|_{A})^{-1}(U) のとき  f|_{A}(x) =f(x) \in U であるから、x \in f^{-1}(U) したがって、 (f|_{A})^{-1}(U) \subset f^{-1}(U)
よって、 (f|_{A})^{-1}(U) \subset A \cap f^{-1}(U)
\supset を示す。
x \in  A \cap f^{-1}(U) をとると、 f|_{A}(x) =f(x) \in U であるから、 x \in (f|_{A})^{-1}(U)

12.

i \in I について、f( \bigcap_{i \in I} A_i) \subset f(A_i) であることからしたがう。

13.

i \in I について、 f( \bigcup_{i \in I} A_i) \supset  f(A_i) であるから、 f( \bigcup_{i \in I} A_i) \supset \bigcup_{i \in I} f(A_i) である。

y \in f( \bigcup_{i \in I} A_i) をとると、ある x \in \bigcup_{i \in I} A_i) が存在して、y=f(x) とかける。ある i \in I が存在して x \in A_i であるが、このとき y=f(x) \in f(A_i) である。ゆえに、y=f(x) \in \bigcup_{i \in I} f(A_i) であるから、 f( \bigcup_{i \in I} A_i) \subset \bigcup_{i \in I} f(A_i) である。

14.

    \begin{align*}  f^{-1}( \bigcap_{i \in I} U_i) &= \{ x \in X \mid f(x) \in \bigcap_{i \in I} U_i \} \\ &= \{ x \in X \mid \forall i \in I ,f(x) \in U_i \} \\ &= \{ x \in X \mid \forall i\in I, x \in f^{-1}(U_i) \} \\ &= \bigcap_{i \in I} f^{-1}(U_i) \end{align*}

15.

    \begin{align*}  f^{-1}( \bigcup_{i \in I} U_i) &= \{ x \in X \mid f(x) \in \bigcup_{i \in I} U_i \} \\ &= \{ x \in X \mid \exists i \in I ,f(x) \in U_i \} \\ &= \{ x \in X \mid \exists i\in I, x \in f^{-1}(U_i) \} \\ &= \bigcup_{i \in I} f^{-1}(U_i) \end{align*}



Rem.1.

1.および12.について、一般に等号は成立しません。例えば、A,B はともに空集合でないが、A \cap B は空集合になってしまうケースを考えれば、明らかに等号が成り立ちません。

一方で、3.および4.や、14.および15.が示すように、逆像についてはいつでも等号が成立します。このことはある意味で、像よりも逆像の方が良い性質を持っていると考えることができます。



Rem.2.

6.および7.についても、一般に等号は成立しません。こちらについては具体例を挙げてみましょう。



◇Ex.SetTop.3.5.2.

X= \{1,2,3,4,5\},Y=\{10,20,30,40,50,60,70\}
A=\{1,2\} \subset X,U= \{10,20,30 \} \subset Y とし、
f \colon X \rightarrow Y
f(1)=f(2)=f(3)=10,f(4)=f(5)=20 で定義します。

f(A)=\{10\} であり、f^{-1}(f(A))= \{1,2,3 \} \supsetneq A となります。
f^{-1}(U)= \{1,2,3,4,5\} であり、f(f^{-1}(U))= \{10,20\} \subsetneq U となります。


 

関連記事

  1. 大学数学

    集合.20 選択公理

    選択公理実は今までも暗に使っていたのですが、次のことは公理とみ…

  2. 大学数学

    写像.10 積集合の普遍性

    積集合の普遍性積集合とは何かを集合と元を用いて具体的に記述する…

  3. 大学数学

    集合.12 二項関係.2 同値関係

    同値関係前回、二項関係として恒等関係(=)や合同関係(≡)など…

  4. 大学数学

    集合.6 共通集合と和集合(一般の場合)

    共通集合と和集合(一般の場合)添字集合と集合族の概念を使って、…

  5. 大学数学

    論理記号.5 論理演算

    論理演算前回までで一通りよく使う論理記号については押さえました…

  6. 大学数学

    集合.22 整列可能定理、超限帰納法

    整列集合と整列可能定理前回定義した用語を用いて、整列集合を定義…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.10 直和(非交和、無縁和)
  2. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像
  3. 大学数学

    集合.6 共通集合と和集合(一般の場合)
  4. 大学数学

    集合.9 積集合(一般の場合)
  5. 大学数学

    集合.13 同値類と集合の分割
PAGE TOP
error: Content is protected !!