大学数学

写像.3 写像の合成

写像の合成

高校数学で合成関数というものをやったかと思いますが、より一般に2つの写像 f \colon X \rightarrow Yg \colon Y \rightarrow Z があるとき( f の行き先と g の定義域が一致していることが重要です)、fg合成(写像)を考えることができます。


◆Def.SetTop.3.3.1.

f \colon X \rightarrow Yg \colon Y \rightarrow Z を写像とするとき、写像 g \circ f \colon X \rightarrow Z

  (g \circ f)(x) \overset{\mathrm{def}}{=} g(f(x))

で定め、fg の合成(写像)という。


写像の合成については、次の結合法則が成り立ちます。


◆Prop.SetTop.3.3.2.

f \colon X \rightarrow Y,g \colon Y \rightarrow Z,h \colon Z \rightarrow W を写像とすると、

(h \circ g) \circ f = h \circ (g \circ f)

が成り立つ。したがって、単に h \circ g \circ f と書いて問題ない。


■Prf.

x \in X とすると、

((h \circ g) \circ f )(x)=(h \circ g)(f(x))=h(g(f(x)))=h((g \circ f)(x))=  (h \circ (g \circ f))(x)

である。 □



◇Ex.SetTop.3.3.3.

f \colon \mathbb{R} \rightarrow \mathbb{R},f(x) = x^2
g \colon \mathbb{R} \rightarrow \mathbb{R},g(x) = x^2+1

とすると、g \circ f および f \circ g が定義できて、

(g \circ f)(x)=g(f(x))=g(x^2)=(x^2)^2+1=x^4+1
(f \circ g)(x)=f(g(x))=f(x^2+1)=(x^2+1)^2=x^4+2x^2+1

です。

一般に、g \circ f が定義できたとしても  f \circ g が定義できるとは限らないし、定義できたとしてもこの例のように g \circ f \neq  f \circ g であることが普通です。

すなわち、写像の合成に関しては一般には交換法則は成り立たないので注意しましょう。


 

関連記事

  1. 大学数学

    論理記号.4 ~がただ一つ存在する、定義

    \( \exists ! \) ~がただ一つ存在する\( \e…

  2. 大学数学

    論理記号.6 否定の作り方

    否定の作り方~一定のルールに則って否定を作ろう~数学において、…

  3. 大学数学

    大学数学概説.2 大学1、2年生レベルの科目

    微分積分学大学1、2年生で、数学科に限らず理系のかなりの割合の…

  4. 大学数学

    写像.12 商集合の普遍性

    商集合の普遍性商集合を普遍性によって特徴付けます。…

  5. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

  6. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像

    集合の準同型定理Prop.SetTop.3.12.1.を応用す…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.14 商集合
  2. 大学数学

    集合.22 整列可能定理、超限帰納法
  3. 大学数学

    論理記号.3 すべての、~が存在する
  4. 大学数学

    写像.2 全射、単射、全単射、像、逆像、制限、拡張
  5. 大学数学

    集合.6 共通集合と和集合(一般の場合)
PAGE TOP
error: Content is protected !!