大学数学

写像.3 写像の合成

写像の合成

高校数学で合成関数というものをやったかと思いますが、より一般に2つの写像 f \colon X \rightarrow Yg \colon Y \rightarrow Z があるとき( f の行き先と g の定義域が一致していることが重要です)、fg合成(写像)を考えることができます。


◆Def.SetTop.3.3.1.

f \colon X \rightarrow Yg \colon Y \rightarrow Z を写像とするとき、写像 g \circ f \colon X \rightarrow Z

  (g \circ f)(x) \overset{\mathrm{def}}{=} g(f(x))

で定め、fg の合成(写像)という。


写像の合成については、次の結合法則が成り立ちます。


◆Prop.SetTop.3.3.2.

f \colon X \rightarrow Y,g \colon Y \rightarrow Z,h \colon Z \rightarrow W を写像とすると、

(h \circ g) \circ f = h \circ (g \circ f)

が成り立つ。したがって、単に h \circ g \circ f と書いて問題ない。


■Prf.

x \in X とすると、

((h \circ g) \circ f )(x)=(h \circ g)(f(x))=h(g(f(x)))=h((g \circ f)(x))=  (h \circ (g \circ f))(x)

である。 □



◇Ex.SetTop.3.3.3.

f \colon \mathbb{R} \rightarrow \mathbb{R},f(x) = x^2
g \colon \mathbb{R} \rightarrow \mathbb{R},g(x) = x^2+1

とすると、g \circ f および f \circ g が定義できて、

(g \circ f)(x)=g(f(x))=g(x^2)=(x^2)^2+1=x^4+1
(f \circ g)(x)=f(g(x))=f(x^2+1)=(x^2+1)^2=x^4+2x^2+1

です。

一般に、g \circ f が定義できたとしても  f \circ g が定義できるとは限らないし、定義できたとしてもこの例のように g \circ f \neq  f \circ g であることが普通です。

すなわち、写像の合成に関しては一般には交換法則は成り立たないので注意しましょう。


 

関連記事

  1. 大学数学

    写像.4 逆写像

    逆写像\( f \colon X \rightarrow Y …

  2. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合

    対角線論法集合 \( X \) のべき集合は \( 2^{X}…

  3. 大学数学

    大学数学概説.1 大学数学科の一般的なカリキュラム

    大学数学概説大学レベル以上の数学について、そもそもどんなものか知ら…

  4. 大学数学

    集合.17 集合の濃度.2 可算集合

    どこまでが高々可算集合なのか?自然数全体の集合 \( \mat…

  5. 大学数学

    論理記号.5 論理演算

    論理演算前回までで一通りよく使う論理記号については押さえました…

  6. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)

    ルベーグ積分大学1、2年生でやってきた積分はリーマン積分と言い…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    論理記号.1 よく使う論理記号一覧、命題
  2. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合
  3. 大学数学

    集合.7 積集合(n個の場合)
  4. 大学数学

    写像.9 圏、特別な射と記号、可換図式
  5. 大学数学

    集合.20 選択公理
PAGE TOP
error: Content is protected !!