大学数学

写像.3 写像の合成

写像の合成

高校数学で合成関数というものをやったかと思いますが、より一般に2つの写像 f \colon X \rightarrow Yg \colon Y \rightarrow Z があるとき( f の行き先と g の定義域が一致していることが重要です)、fg合成(写像)を考えることができます。


◆Def.SetTop.3.3.1.

f \colon X \rightarrow Yg \colon Y \rightarrow Z を写像とするとき、写像 g \circ f \colon X \rightarrow Z

  (g \circ f)(x) \overset{\mathrm{def}}{=} g(f(x))

で定め、fg の合成(写像)という。


写像の合成については、次の結合法則が成り立ちます。


◆Prop.SetTop.3.3.2.

f \colon X \rightarrow Y,g \colon Y \rightarrow Z,h \colon Z \rightarrow W を写像とすると、

(h \circ g) \circ f = h \circ (g \circ f)

が成り立つ。したがって、単に h \circ g \circ f と書いて問題ない。


■Prf.

x \in X とすると、

((h \circ g) \circ f )(x)=(h \circ g)(f(x))=h(g(f(x)))=h((g \circ f)(x))=  (h \circ (g \circ f))(x)

である。 □



◇Ex.SetTop.3.3.3.

f \colon \mathbb{R} \rightarrow \mathbb{R},f(x) = x^2
g \colon \mathbb{R} \rightarrow \mathbb{R},g(x) = x^2+1

とすると、g \circ f および f \circ g が定義できて、

(g \circ f)(x)=g(f(x))=g(x^2)=(x^2)^2+1=x^4+1
(f \circ g)(x)=f(g(x))=f(x^2+1)=(x^2+1)^2=x^4+2x^2+1

です。

一般に、g \circ f が定義できたとしても  f \circ g が定義できるとは限らないし、定義できたとしてもこの例のように g \circ f \neq  f \circ g であることが普通です。

すなわち、写像の合成に関しては一般には交換法則は成り立たないので注意しましょう。


 

関連記事

  1. 大学数学

    写像.12 商集合の普遍性

    商集合の普遍性商集合を普遍性によって特徴付けます。…

  2. 大学数学

    大学数学概説.2 大学1、2年生レベルの科目

    微分積分学大学1、2年生で、数学科に限らず理系のかなりの割合の…

  3. 大学数学

    集合.12 二項関係.2 同値関係

    同値関係前回、二項関係として恒等関係(=)や合同関係(≡)など…

  4. 大学数学

    集合.5 添字集合と集合族

    添字集合と集合族より一般の場合の共通集合や和集合を考えるために…

  5. 大学数学

    数の構成.2 自然数.2 自然数の加法.1 和の定義と数学的帰納法

    前回からの約束事と帰結前回述べた通り、以下ではペアノシステムと…

  6. 大学数学

    論理記号.4 ~がただ一つ存在する、定義

    \( \exists ! \) ~がただ一つ存在する\( \e…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    大学数学概説.1 大学数学科の一般的なカリキュラム
  2. 大学数学

    写像.11 直和の普遍性
  3. 大学数学

    集合.1 集合と元(要素)、よく使う集合
  4. 大学数学

    論理記号.5 論理演算
  5. 大学数学

    写像.12 商集合の普遍性
PAGE TOP
error: Content is protected !!