大学数学

集合.23 ツォルンの補題

ツォルンの補題

代数学などにおいてよく用いられる選択公理と同値な命題として、ツォルンの補題というものがあります。選択公理との同値性の証明はしませんが、重要かつしばしば使われる定理であるためここで述べておきます。


◆Def.SetTop.2.23.1.

X を空でない順序集合とする。X の任意の空でない全順序部分集合が X に上界を持つとき、X は帰納的順序集合であるという。


ツォルンの補題は、次のように述べられます。


◆Thm.SetTop.2.23.2. (ツォルンの補題)

X を帰納的順序集合とする。X には少なくとも一つの極大元が存在する。


ここではこれ以上は説明しませんが、いずれツォルンの補題を用いて証明する命題が出て来るでしょう。

以上で集合を終わります。次は写像になります

これで集合に関する基本事項は一通り押さえたと思いますので、ひとまず終わりにしようと思います。お疲れ様でした。

次のセクションでは写像について見ていきます。既に必要最小限のところだけ写像を扱いましたが、より詳しく取り扱う予定です。

関連記事

  1. 大学数学

    集合.1 集合と元(要素)、よく使う集合

    大学の数学書がなかなか初学者に読めない理由いざ興味を持って大学…

  2. 大学数学

    写像.9 圏、特別な射と記号、可換図式

    圏、特別な射ここで、あまり深入りはしませんが、圏論的な全射、単…

  3. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

  4. 大学数学

    集合.13 同値類と集合の分割

    同値類同値関係 \( \sim \) で結ばれているということ…

  5. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)

    ルベーグ積分大学1、2年生でやってきた積分はリーマン積分と言い…

  6. 大学数学

    写像.3 写像の合成

    写像の合成高校数学で合成関数というものをやったかと思いますが、…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.16 集合の濃度.1 濃度の定義と比較方法
  2. 大学数学

    集合.5 添字集合と集合族
  3. 大学数学

    写像.8 単射の性質
  4. 大学数学

    集合.20 選択公理
  5. 大学数学

    集合.23 ツォルンの補題
PAGE TOP
error: Content is protected !!