大学数学

集合.23 ツォルンの補題

ツォルンの補題

代数学などにおいてよく用いられる選択公理と同値な命題として、ツォルンの補題というものがあります。選択公理との同値性の証明はしませんが、重要かつしばしば使われる定理であるためここで述べておきます。


◆Def.SetTop.2.23.1.

X を空でない順序集合とする。X の任意の空でない全順序部分集合が X に上界を持つとき、X は帰納的順序集合であるという。


ツォルンの補題は、次のように述べられます。


◆Thm.SetTop.2.23.2. (ツォルンの補題)

X を帰納的順序集合とする。X には少なくとも一つの極大元が存在する。


ここではこれ以上は説明しませんが、いずれツォルンの補題を用いて証明する命題が出て来るでしょう。

以上で集合を終わります。次は写像になります

これで集合に関する基本事項は一通り押さえたと思いますので、ひとまず終わりにしようと思います。お疲れ様でした。

次のセクションでは写像について見ていきます。既に必要最小限のところだけ写像を扱いましたが、より詳しく取り扱う予定です。

関連記事

  1. 大学数学

    集合.21 上界、下界、上限、下限、最大元、最小元、極大元、極小元

    上界、下界、上限、下限、最大元、最小元、極大元、極小元整列可能…

  2. 大学数学

    集合.8 「同一視する」という考え方

    写像を少しだけ予習一般の場合の積集合を定義するためには、写像と…

  3. 大学数学

    論理記号.1 よく使う論理記号一覧、命題

    論理記号とは~数学を記述する上での基本言語~数学においてよく使…

  4. 大学数学

    集合.3 補集合、差集合

    補集合集合 \( A \) は全体集合 \( X \) の部分…

  5. 大学数学

    写像.10 積集合の普遍性

    積集合の普遍性積集合とは何かを集合と元を用いて具体的に記述する…

  6. 大学数学

    集合.4 共通集合と和集合(n個の場合)

    共通集合集合 \( A,B \) の共通集合を次のように定義し…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.5 添字集合と集合族
  2. 大学数学

    写像.8 単射の性質
  3. 大学数学

    写像.7 全射の性質
  4. 大学数学

    集合.6 共通集合と和集合(一般の場合)
  5. 大学数学

    論理記号.4 ~がただ一つ存在する、定義
PAGE TOP
error: Content is protected !!