大学数学

集合.23 ツォルンの補題

ツォルンの補題

代数学などにおいてよく用いられる選択公理と同値な命題として、ツォルンの補題というものがあります。選択公理との同値性の証明はしませんが、重要かつしばしば使われる定理であるためここで述べておきます。


◆Def.SetTop.2.23.1.

X を空でない順序集合とする。X の任意の空でない全順序部分集合が X に上界を持つとき、X は帰納的順序集合であるという。


ツォルンの補題は、次のように述べられます。


◆Thm.SetTop.2.23.2. (ツォルンの補題)

X を帰納的順序集合とする。X には少なくとも一つの極大元が存在する。


ここではこれ以上は説明しませんが、いずれツォルンの補題を用いて証明する命題が出て来るでしょう。

以上で集合を終わります。次は写像になります

これで集合に関する基本事項は一通り押さえたと思いますので、ひとまず終わりにしようと思います。お疲れ様でした。

次のセクションでは写像について見ていきます。既に必要最小限のところだけ写像を扱いましたが、より詳しく取り扱う予定です。

関連記事

  1. 大学数学

    集合.18 集合の濃度.3 連続体濃度を持つ集合

    非可算集合可算濃度 \( \aleph_0 \) よりも濃度が…

  2. 大学数学

    集合.12 二項関係.2 同値関係

    同値関係前回、二項関係として恒等関係(=)や合同関係(≡)など…

  3. 大学数学

    論理記号.1 よく使う論理記号一覧、命題

    論理記号とは~数学を記述する上での基本言語~数学においてよく使…

  4. 大学数学

    集合.6 共通集合と和集合(一般の場合)

    共通集合と和集合(一般の場合)添字集合と集合族の概念を使って、…

  5. 大学数学

    集合.1 集合と元(要素)、よく使う集合

    大学の数学書がなかなか初学者に読めない理由いざ興味を持って大学…

  6. 大学数学

    論理記号.5 論理演算

    論理演算前回までで一通りよく使う論理記号については押さえました…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    写像.6 標準的な写像の例
  2. 大学数学

    集合.6 共通集合と和集合(一般の場合)
  3. 大学数学

    集合.13 同値類と集合の分割
  4. 大学数学

    集合.2 部分集合、べき集合
  5. 大学数学

    集合.9 積集合(一般の場合)
PAGE TOP
error: Content is protected !!