大学数学

集合.20 選択公理

選択公理

実は今までも暗に使っていたのですが、次のことは公理とみなされています。


◆Axiom.SetTop.2.20.1. (選択公理)

I を任意の集合とし、(X_i)_{i \in I } を任意の集合族とすると、\prod_{ i \in I} X_i \neq \emptyset


このように書くとものものしいですが、つまりはどのような集合族をもってきたとしても、それぞれの集合の中から1つずつ元を選び出すという操作ができる(積集合の元は、それぞれの集合の中から1つずつ元を選び出す写像なので、積集合が空でないということは、そのような操作ができることを保証している)ということを意味しています。

これは I が有限集合のときは当たり前にできることです( I の濃度が n なら、単に n 個の元のペアを作るのと同じことになります)が、I が無限集合のときにも同じような操作ができることを保証するのが選択公理です。

実は、選択公理はわたしたちが通常使っている集合の公理系(ZF公理系と言います)からは肯定も否定も証明できない命題であることがわかっています。(なので公理とされています)

ですが、普通の数学では選択公理を認めた方が色々と便利なので、通常は選択公理を認める立場を取ります。

選択公理と同値な命題

選択公理と同値な命題と知られているものに、整列可能定理とツォルンの補題というものがあります。同値であることの証明は結構難しいのでここではしませんが、特にツォルンの補題は代数学でよく用いられるため、重要な命題です。慣習的に補題と言われていますが、定理と呼ばれるもの並みに重要な命題である例となっています。

関連記事

  1. 大学数学

    集合.2 部分集合、べき集合

    部分集合集合 \( X,Y \) とします。\( X …

  2. 大学数学

    写像.6 標準的な写像の例

    標準的な写像の例今回はいくつかの標準的な写像について例を挙げて…

  3. 大学数学

    写像.10 積集合の普遍性

    積集合の普遍性積集合とは何かを集合と元を用いて具体的に記述する…

  4. 大学数学

    集合.6 共通集合と和集合(一般の場合)

    共通集合と和集合(一般の場合)添字集合と集合族の概念を使って、…

  5. 大学数学

    集合.3 補集合、差集合

    補集合集合 \( A \) は全体集合 \( X \) の部分…

  6. 大学数学

    大学数学概説.3 大学3、4年生レベルの科目(代数)

    群、環、体群、環、体は、いわゆる抽象代数学と言われる分野の基本…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    写像.12 商集合の普遍性
  2. 大学数学

    論理記号.2 否定、かつ、または、~ならば、同値記号
  3. 大学数学

    集合.13 同値類と集合の分割
  4. 大学数学

    写像.11 直和の普遍性
  5. 数学コラム

    虚数iは本当に存在しないのか?~iを作ってみた~
PAGE TOP
error: Content is protected !!