大学数学

集合.10 直和(非交和、無縁和)

直和(非交和、無縁和)


Def.SetTop.2.10.1.

I を集合、(A_i)_{ i \in I を集合族とする。
和集合 \bigcup_{i \in I } A_i に関し、任意の i,j \in I に対して A_i \cap A_j = \emptyset が成り立つとき、和集合は直和(非交和、無縁和)であるといい、\bigcup_{i \in I } A_i\amalg_{i \in I } A_i と表す。


和集合をなすそれぞれの集合が互いに交わらない(共通部分を持たない)とき、和集合を直和と呼ぶと言う約束をします。

しかしながら、一般には集合が交わる(共通部分を持つ)ケースも考えられます。このような場合にも直和を考えたいときがあり、テクニカルですが次のようにします。

例えば、集合 A,B を考えます。一般的には A \cap B = \emptyset とは限らないわけですが、A,B添字を付けたコピーを作ることで「ずらします」。

A のコピーとして A \times \{1 \}B のコピーとして B \times \{ 2 \} を考えると、  (A \times \{1 \}) \cap (B \times \{ 2 \}) = \emptyset となります。したがって、

 (A \times \{1 \}) \cup (B \times \{ 2 \}) \subset (A \cup B) \times \{ 1,2 \}

はDef.SetTop.2.10.1.の意味での直和となります。

このようにして、人為的に直和を作り出すことができます。

一般の集合族  (A_i)_{ i \in I に対しては、それぞれの A_ii を添字したコピーを作って「ずらします」。


Def.SetTop.2.10.2.

I を集合、(A_i)_{ i \in I を集合族とする。
(A_i)_{ i \in I の直和を

  \amalg_{i \in I } A_i  \overset{\mathrm{def}}{=} \{ (x,i) \mid \forall i \in I, x \in A_i \} \subset \bigcup_{i \in I } A_i \times I

と定義する。


集合 A_iA_i \times \{ i \} と同一視して考えると、任意の i,j について A_i \cap A_j = \emptyset が成り立つときは、Def.SetTop.2.10.1.の意味での直和と同一視して考えることができます。

 

集合.11へ>

<集合.9へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    数の構成.2 自然数.2 自然数の加法.1 和の定義と数学的帰納法

    前回からの約束事と帰結前回述べた通り、以下ではペアノシステムと…

  2. 大学数学

    論理記号.2 否定、かつ、または、~ならば、同値記号

    \( \lnot \) 否定\( P \) を命題とすると、\…

  3. 大学数学

    写像.1 写像の定義

    今回から写像についてやっていきます写像は関数を一般化した概念で…

  4. 大学数学

    写像.12 商集合の普遍性

    商集合の普遍性商集合を普遍性によって特徴付けます。…

  5. 大学数学

    写像.6 標準的な写像の例

    標準的な写像の例今回はいくつかの標準的な写像について例を挙げて…

  6. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合

    対角線論法集合 \( X \) のべき集合は \( 2^{X}…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.21 上界、下界、上限、下限、最大元、最小元、極大元、極小元
  2. 大学数学

    大学数学概説.1 大学数学科の一般的なカリキュラム
  3. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合
  4. 大学数学

    写像.4 逆写像
  5. 大学数学

    集合.10 直和(非交和、無縁和)
PAGE TOP
error: Content is protected !!