大学数学

集合.10 直和(非交和、無縁和)

直和(非交和、無縁和)


Def.SetTop.2.10.1.

I を集合、(A_i)_{ i \in I を集合族とする。
和集合 \bigcup_{i \in I } A_i に関し、任意の i,j \in I に対して A_i \cap A_j = \emptyset が成り立つとき、和集合は直和(非交和、無縁和)であるといい、\bigcup_{i \in I } A_i\amalg_{i \in I } A_i と表す。


和集合をなすそれぞれの集合が互いに交わらない(共通部分を持たない)とき、和集合を直和と呼ぶと言う約束をします。

しかしながら、一般には集合が交わる(共通部分を持つ)ケースも考えられます。このような場合にも直和を考えたいときがあり、テクニカルですが次のようにします。

例えば、集合 A,B を考えます。一般的には A \cap B = \emptyset とは限らないわけですが、A,B添字を付けたコピーを作ることで「ずらします」。

A のコピーとして A \times \{1 \}B のコピーとして B \times \{ 2 \} を考えると、  (A \times \{1 \}) \cap (B \times \{ 2 \}) = \emptyset となります。したがって、

 (A \times \{1 \}) \cup (B \times \{ 2 \}) \subset (A \cup B) \times \{ 1,2 \}

はDef.SetTop.2.10.1.の意味での直和となります。

このようにして、人為的に直和を作り出すことができます。

一般の集合族  (A_i)_{ i \in I に対しては、それぞれの A_ii を添字したコピーを作って「ずらします」。


Def.SetTop.2.10.2.

I を集合、(A_i)_{ i \in I を集合族とする。
(A_i)_{ i \in I の直和を

  \amalg_{i \in I } A_i  \overset{\mathrm{def}}{=} \{ (x,i) \mid \forall i \in I, x \in A_i \} \subset \bigcup_{i \in I } A_i \times I

と定義する。


集合 A_iA_i \times \{ i \} と同一視して考えると、任意の i,j について A_i \cap A_j = \emptyset が成り立つときは、Def.SetTop.2.10.1.の意味での直和と同一視して考えることができます。

 

集合.11へ>

<集合.9へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像

    集合の準同型定理Prop.SetTop.3.12.1.を応用す…

  2. 大学数学

    集合.9 積集合(一般の場合)

    積集合(一般の場合)準備はできましたので、一般の集合族 \( …

  3. 大学数学

    集合.16 集合の濃度.1 濃度の定義と比較方法

    有限集合と無限集合、濃度直観的に意味がわかると思うのでここまで…

  4. 大学数学

    集合.17 集合の濃度.2 可算集合

    どこまでが高々可算集合なのか?自然数全体の集合 \( \mat…

  5. 大学数学

    写像.12 商集合の普遍性

    商集合の普遍性商集合を普遍性によって特徴付けます。…

  6. 大学数学

    論理記号.3 すべての、~が存在する

    \( \forall \) すべての、任意の集合 \( X \…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    大学数学概説.1 大学数学科の一般的なカリキュラム
  2. 大学数学

    集合.4 共通集合と和集合(n個の場合)
  3. 大学数学

    写像.10 積集合の普遍性
  4. 大学数学

    大学数学概説.2 大学1、2年生レベルの科目
  5. 大学数学

    集合.1 集合と元(要素)、よく使う集合
PAGE TOP
error: Content is protected !!