大学数学

集合.15 集合の演算

集合の演算

ここまで、べき集合、和集合、補集合、差集合、共通集合、和集合、積集合、商集合と一通りの集合についてやりました。ここでは集合の演算についてよく使う公式を一まとめにしておきます。


◆よく使う集合演算公式

ここでは、ことわりなく大文字は集合とする。

・交換則
A \cap B = B \cap A
A \cup B = B \cup A

・結合則
(A \cap B) \cap C = A \cap (B \cap C)
(A \cup B) \cup C = A \cup (B \cup C)

・分配則
(A \cap B) \cup C = (A \cup B) \cap ( B \cup C)
(A \cup B) \cap C = (A \cap B) \cup ( B \cap C)
A \cap (B \cup C) = (A \cap B) \cup ( A \cap C)
A \cup (B \cap C) = (A \cup B) \cap ( A \cup C)
一般の共通集合、和集合 \bigcap_{ i \in I } A_i,\bigcup_{ i \in I } A_i に対して
(\bigcap_{ i \in I } A_i) \cup B = \bigcap_{ i \in I } ( A_i \cup B)
(\bigcup_{ i \in I } A_i) \cap B = \bigcup_{ i \in I } ( A_i \cap B)

・全体集合 X 、部分集合 A とする
A \cap \emptyset = \emptyset
A \cup \emptyset = A
A \cap X = A
A \cup X = X
A \cap A^{c} = \emptyset
A \cup A^{c} = X
(A^{c})^{c} = A

・ド・モルガンの法則
全体集合 X 、部分集合 A,B とする
(A \cap B)^{c} = A^{c} \cup B^{c}
(A \cup B)^{c} = A^{c} \cap B^{c}
一般の集合 X,A,BA,BX の部分集合とは限らない)について
X \verb|\| (A \cap B) = (X \verb|\| A) \cup  (X \verb|\| B)
X \verb|\| (A \cup B) = (X \verb|\| A) \cap  (X \verb|\| B)
一般の共通集合、和集合 \bigcap_{ i \in I } A_i,\bigcup_{ i \in I } A_i に対して
  (\bigcap_{ i \in I } A_i)^{c} = \bigcup_{ i \in I } A_i^{c}
  (\bigcup_{ i \in I } A_i)^{c} = \bigcap_{ i \in I } A_i^{c}
X \verb|\| (\bigcap_{ i \in I } A_i) = \bigcup_{ i \in I } (  X \verb|\| A_i)
X \verb|\| (\bigcup_{ i \in I } A_i) = \bigcap_{ i \in I } (  X \verb|\| A_i)

・差集合に関する演算
C \verb|\| ( B \verb|\| A ) = (A \cap C) \cup ( C \verb|\| B )
( B \verb|\| A) \cap C = ( B \cap C ) \verb|\| A =  B \cap ( C \verb|\| A )
( B \verb|\| A) \cup C = ( B \cup C ) \verb|\| (A \verb|\| C)
全体集合 X、部分集合 A,B とするとき
 B \verb|\| A = A^{c} \cap B
(B \verb|\| A)^{c} = A\cup B^{c}

・積集合に関する演算
A \times (B \cap C) = ( A \times B ) \cap ( A \times C)
A \times (B \cup C) = ( A \times B ) \cup ( A \times C)
 (B \cap C) \times A = ( B \times A ) \cap ( C \times A)
 (B \cup C) \times A = ( B \times A ) \cup ( C \times A)

・共通集合、和集合と論理式
((A \subset C) \land ( B \subset C)) \Rightarrow  A \cup B \subset C
((C \subset A) \land ( C \subset B)) \Rightarrow C \subset  A \cap B

・次は同値
A \subset B
A \cap B = A
A \cup B = B
A  \verb|\| B = \emptyset
B^{c} \subset A^{c}


 

集合 その15へ>

<集合 その13へ

記事一覧(大学数学)に戻る

関連記事

  1. 大学数学

    集合.22 整列可能定理、超限帰納法

    整列集合と整列可能定理前回定義した用語を用いて、整列集合を定義…

  2. 大学数学

    大学数学概説.2 大学1、2年生レベルの科目

    微分積分学大学1、2年生で、数学科に限らず理系のかなりの割合の…

  3. 大学数学

    集合.12 二項関係.2 同値関係

    同値関係前回、二項関係として恒等関係(=)や合同関係(≡)など…

  4. 大学数学

    論理記号.4 ~がただ一つ存在する、定義

    \( \exists ! \) ~がただ一つ存在する\( \e…

  5. 大学数学

    集合.8 「同一視する」という考え方

    写像を少しだけ予習一般の場合の積集合を定義するためには、写像と…

  6. 大学数学

    論理記号.3 すべての、~が存在する

    \( \forall \) すべての、任意の集合 \( X \…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.12 二項関係.2 同値関係
  2. 大学数学

    写像.4 逆写像
  3. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)
  4. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合
  5. 大学数学

    論理記号.6 否定の作り方
PAGE TOP
error: Content is protected !!