大学数学

集合.6 共通集合と和集合(一般の場合)

共通集合と和集合(一般の場合)

添字集合と集合族の概念を使って、一般の集合族 (A_i)_{ i \in I } に対して共通集合 \bigcap_{i \in I} A_i 和集合 \bigcup_{i \in I} A_i を定義します。

共通集合は (A_i)_{ i \in I } に属するすべての集合に含まれる元の集合、和集合は (A_i)_{ i \in I } に属する集合のうち少なくとも一つに含まれる元の集合として定義されます。したがって、


Def.SetTop.2.6.1.

    \[ \bigcap_{i \in I} A_i \overset{\mathrm{def}}{=} \{ x \mid \forall i \in I , x \in A_i \} \]

    \[ \bigcup_{i \in I} A_i \overset{\mathrm{def}}{=} \{ x \mid \exists i \in I , x \in A_i \} \]


となります。

特に I = \mathbb{N} のときは、\bigcap_{n \in \mathbb{N}} A_n や \bigcup_{n \in \mathbb{N}} A_n をそれぞれ \bigcap_{n = 0}^{ \infty } A_n や \bigcup_{n = 0}^{ \infty } A_n などと表すこともあります。


Ex.SetTop.2.6.2.

I = \{ 1,2 \} とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i はそれぞれ A_1 \cap A_2A_1 \cup A_2 を表します。

I = \{ 1,2, \dots , n \} とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i はそれぞれ A_1 \cap A_2 \cap  \dots \cap  A_nA_1 \cup A_2 \cup  \dots \cup  A_n を表します。

I = [0,1] とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i を具体的に書き表すことはもはやできませんが、0 以上 1 以下の各実数 i に対応する各 A_i について、共通集合や和集合を考えていることになります。



Ex.SetTop.2.6.3.

A_n = [0, \frac{1}{n} ], n \in \mathbb{N}^{+}= \{ 1,2, \dots , n, \dots  \} とすると、

    \[ \bigcap_{n = 1}^{ \infty } A_n = \{ 0 \} \]

    \[ \bigcup_{n = 1}^{ \infty } A_n = [0,1] \]

となります。

\bigcup_{n = 1}^{ \infty } A_n = [0,1] となるのは、[0,1] \supset [0,1/2] \supset [0,1/3]  \supset \cdots となることから明らかです。

\bigcap_{n = 1}^{ \infty } A_n = \{ 0 \} については、任意の正の実数 r >0 について、r > 1/n となるような n を取ると、r \notin A_n となり、一方、任意の n について、0 \in A_n であることからわかります。


 

集合.7へ>

<集合,5へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    集合.11 二項関係.1 順序

    二項関係今回からは二項関係というものを考えていきます。二項関係…

  2. 大学数学

    論理記号.1 よく使う論理記号一覧、命題

    論理記号とは~数学を記述する上での基本言語~数学においてよく使…

  3. 大学数学

    論理記号.3 すべての、~が存在する

    \( \forall \) すべての、任意の集合 \( X \…

  4. 大学数学

    論理記号.5 論理演算

    論理演算前回までで一通りよく使う論理記号については押さえました…

  5. 大学数学

    集合.16 集合の濃度.1 濃度の定義と比較方法

    有限集合と無限集合、濃度直観的に意味がわかると思うのでここまで…

  6. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    写像.6 標準的な写像の例
  2. 数学コラム

    虚数iは本当に存在しないのか?~iを作ってみた~
  3. 大学数学

    集合.14 商集合
  4. 大学数学

    写像.10 積集合の普遍性
  5. 大学数学

    写像.11 直和の普遍性
PAGE TOP
error: Content is protected !!