大学数学

集合.6 共通集合と和集合(一般の場合)

共通集合と和集合(一般の場合)

添字集合と集合族の概念を使って、一般の集合族 (A_i)_{ i \in I } に対して共通集合 \bigcap_{i \in I} A_i 和集合 \bigcup_{i \in I} A_i を定義します。

共通集合は (A_i)_{ i \in I } に属するすべての集合に含まれる元の集合、和集合は (A_i)_{ i \in I } に属する集合のうち少なくとも一つに含まれる元の集合として定義されます。したがって、


Def.SetTop.2.6.1.

    \[ \bigcap_{i \in I} A_i \overset{\mathrm{def}}{=} \{ x \mid \forall i \in I , x \in A_i \} \]

    \[ \bigcup_{i \in I} A_i \overset{\mathrm{def}}{=} \{ x \mid \exists i \in I , x \in A_i \} \]


となります。

特に I = \mathbb{N} のときは、\bigcap_{n \in \mathbb{N}} A_n や \bigcup_{n \in \mathbb{N}} A_n をそれぞれ \bigcap_{n = 0}^{ \infty } A_n や \bigcup_{n = 0}^{ \infty } A_n などと表すこともあります。


Ex.SetTop.2.6.2.

I = \{ 1,2 \} とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i はそれぞれ A_1 \cap A_2A_1 \cup A_2 を表します。

I = \{ 1,2, \dots , n \} とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i はそれぞれ A_1 \cap A_2 \cap  \dots \cap  A_nA_1 \cup A_2 \cup  \dots \cup  A_n を表します。

I = [0,1] とすれば、\bigcap_{i \in I} A_i \bigcup_{i \in I} A_i を具体的に書き表すことはもはやできませんが、0 以上 1 以下の各実数 i に対応する各 A_i について、共通集合や和集合を考えていることになります。



Ex.SetTop.2.6.3.

A_n = [0, \frac{1}{n} ], n \in \mathbb{N}^{+}= \{ 1,2, \dots , n, \dots  \} とすると、

    \[ \bigcap_{n = 1}^{ \infty } A_n = \{ 0 \} \]

    \[ \bigcup_{n = 1}^{ \infty } A_n = [0,1] \]

となります。

\bigcup_{n = 1}^{ \infty } A_n = [0,1] となるのは、[0,1] \supset [0,1/2] \supset [0,1/3]  \supset \cdots となることから明らかです。

\bigcap_{n = 1}^{ \infty } A_n = \{ 0 \} については、任意の正の実数 r >0 について、r > 1/n となるような n を取ると、r \notin A_n となり、一方、任意の n について、0 \in A_n であることからわかります。


 

集合.7へ>

<集合,5へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    集合.4 共通集合と和集合(n個の場合)

    共通集合集合 \( A,B \) の共通集合を次のように定義し…

  2. 大学数学

    集合.11 二項関係.1 順序

    二項関係今回からは二項関係というものを考えていきます。二項関係…

  3. 大学数学

    集合.3 補集合、差集合

    補集合集合 \( A \) は全体集合 \( X \) の部分…

  4. 大学数学

    写像.6 標準的な写像の例

    標準的な写像の例今回はいくつかの標準的な写像について例を挙げて…

  5. 大学数学

    写像.1 写像の定義

    今回から写像についてやっていきます写像は関数を一般化した概念で…

  6. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像

    集合の準同型定理Prop.SetTop.3.12.1.を応用す…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.8 「同一視する」という考え方
  2. 大学数学

    集合.2 部分集合、べき集合
  3. 大学数学

    写像.5 像と逆像に関する演算
  4. 大学数学

    写像.9 圏、特別な射と記号、可換図式
  5. 大学数学

    数の構成.2 自然数.2 自然数の加法.1 和の定義と数学的帰納法
PAGE TOP
error: Content is protected !!