大学数学

集合.5 添字集合と集合族

添字集合と集合族

より一般の場合の共通集合や和集合を考えるために、添字集合および集合族という概念を導入します。

添字集合は普通 I,J などで表されます。

ここでは、I を添字集合としましょう。

I の各元 i に対して、それぞれ集合 A_i を割り当てます。これを集合族(族は英語でclass)と言い、(A_i)_{i \in I },\{A_i \}_{i \in I } などと書きます。

I は、文脈上 I が具体的に何であるか明らかなとき、あるいは I が任意の集合であるときなどには、しばしば省略されます。そういった場合、(A_i)_{i },\{A_i \}_{i } などと書きます。


Ex.SetTop.2.5.1.

簡単な場合から順に例を示していきます。

I = \{ 1,2 \} とすれば、(A_i)_{i \in I} とは A_1,A_2 のことを表します。

I = \{ 1,2, \dots , n \} とすれば、(A_i)_{i \in I} とは A_1,A_2, \dots , A_n のことを表します。

I = \mathbb{N} とすれば、(A_i)_{i \in \mathbb{N} とは A_0,A_1, \dots , A_n, \dots のことを表します。この場合、特に (A_i)_{i=0}^{ \infty } とも書きます。

I = [0,1] とすれば、(A_i)_{i \in I} を具体的に書き表すことはもはやできません。例えば、A_0, A_{0.5},A_{0.33 \cdots }, A_{ \sqrt{2} / 2 } などが (A_i)_{i \in I} に属する集合です。

I = \mathbb{R} とすれば、(A_t)_{t \in \mathbb{R} とは、実数 t によってパラメータ付けられた集合族などと言うことがあります。例えば、A_e,A_{ \pi } などもこの族に属します。


 

集合.6へ>

<集合.4へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    論理記号.1 よく使う論理記号一覧、命題

    論理記号とは~数学を記述する上での基本言語~数学においてよく使…

  2. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合

    対角線論法集合 \( X \) のべき集合は \( 2^{X}…

  3. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)

    ルベーグ積分大学1、2年生でやってきた積分はリーマン積分と言い…

  4. 大学数学

    集合.13 同値類と集合の分割

    同値類同値関係 \( \sim \) で結ばれているということ…

  5. 大学数学

    大学数学概説.1 大学数学科の一般的なカリキュラム

    大学数学概説大学レベル以上の数学について、そもそもどんなものか知ら…

  6. 大学数学

    写像.8 単射の性質

    単射の性質単射であることを同値な条件で言い替えることで特徴付け…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.23 ツォルンの補題
  2. 大学数学

    集合.21 上界、下界、上限、下限、最大元、最小元、極大元、極小元
  3. 大学数学

    集合.13 同値類と集合の分割
  4. 大学数学

    集合.14 商集合
  5. 数学コラム

    虚数iは本当に存在しないのか?~iを作ってみた~
PAGE TOP
error: Content is protected !!