大学数学

集合.4 共通集合と和集合(n個の場合)

共通集合

集合 A,B共通集合を次のように定義します。


Def.SetTop.2.4.1.

A \cap B \overset{\mathrm{def}}{=} \{ x \, | \, x \in A \land x \in B \}


すなわち、A の元でありかつ B の元でもあるすべての元の集合が AB の共通集合です。

より一般に n 個の場合でも共通集合を定義することができます。

集合 A_1,A_2, \dots ,A_n の共通集合は


Def.SetTop.2.4.2.

A_1 \cap A_2 \cap \cdots \cap A_n \overset{\mathrm{def}}{=} \{ x \, | \, \forall i =1,2, \dots ,n \hspace{10px} x \in A_i \}


となります。

すなわち、A_1,A_2, \dots ,A_n の共通集合は、A_1,A_2, \dots ,A_nすべてに含まれる元の集合です。

A_1 \cap A_2 \cap \cdots \cap A_n

    \[ \bigcap_{i=1}^{n} A_i, \bigcap_{i=1, \dots ,n} A_i ,\bigcap_{i \in \{1, \dots ,n \} } A_i\]

とも書きます。

無限個の場合を含むさらに一般の場合があるのですが、それはまた後でやります。

和集合

集合 A,B和集合を次のように定義します。


Def.SetTop.2.4.3.

A \cup B \overset{\mathrm{def}}{=} \{ x \, | \, x \in A \lor x \in B \}


すなわち、A の元であるかまたは B の元であるすべての元の集合が AB の和集合です。

より一般に n 個の場合でも和集合を定義することができます。

集合 A_1,A_2, \dots ,A_n の和集合は


Def.SetTop.2.4.4.

A_1 \cup A_2 \cup \cdots \cup A_n \overset{\mathrm{def}}{=} \{ x \, | \, \exists i =1,2, \dots ,n \hspace{10px} x \in A_i \}


となります。

すなわち、A_1,A_2, \dots ,A_n の和集合は、A_1,A_2, \dots ,A_n少なくとも一つに含まれる元の集合です。

A_1 \cup A_2 \cup \cdots \cup A_n

    \[ \bigcup_{i=1}^{n} A_i, \bigcup_{i=1, \dots ,n} A_i ,\bigcup_{i \in \{1, \dots ,n \} } A_i\]

とも書きます。

無限個の場合を含むさらに一般の場合があるのですが、それはまた後でやります。


Ex.SetTop.2.4.5.

A = \{ 1,2,3 \} , B=\{ 3,4,5 \} とすると、

A \cap B = \{ 3 \}, A \cup B = \{ 1,2,3,4,5 \}

です。



Ex.SetTop.2.4.6.

A_i = [i,i+1],i=0,1, \dots ,n とすると、

    \[ \bigcap_{i=0}^{n} A_i = \{ 1,2, \dots , n \} , \bigcup_{i=0}^{n} A_i = [0,n+1] \]

となります。


 

集合.5へ>

<集合.3へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    写像.8 単射の性質

    単射の性質単射であることを同値な条件で言い替えることで特徴付け…

  2. 大学数学

    写像.3 写像の合成

    写像の合成高校数学で合成関数というものをやったかと思いますが、…

  3. 大学数学

    写像.9 圏、特別な射と記号、可換図式

    圏、特別な射ここで、あまり深入りはしませんが、圏論的な全射、単…

  4. 大学数学

    集合.14 商集合

    商集合前回の話で、同値類が集合の分割を与えるので、同値類をすべ…

  5. 大学数学

    集合.8 「同一視する」という考え方

    写像を少しだけ予習一般の場合の積集合を定義するためには、写像と…

  6. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.2 部分集合、べき集合
  2. 大学数学

    論理記号.3 すべての、~が存在する
  3. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)
  4. 大学数学

    集合.13 同値類と集合の分割
  5. 大学数学

    集合.15 集合の演算
PAGE TOP
error: Content is protected !!