大学数学

集合.3 補集合、差集合

補集合

集合 A全体集合 X の部分集合であるとします。集合 A属さない元すべての集合を考えることができます。

これを A補集合と言い、A^{c} と表します。

※上付き文字の c は英語のcomplementの略です。また、高校では補集合はよく \overline{A} で表したかと思いますが、大学では一般にこの記号は閉包という違う概念を表すのに用いられます。

注意:集合 A は全体集合 X の部分集合であるという仮定は本質的に重要です。補集合を考えるときには、何らかのより大きな集合(全体集合)がなければ定義することができないからです。より大きな集合が異なれば、当然ですが補集合も異なります。すぐ後に例で示します。

A^{c} を集合の記法で書くと、


Def.SetTop.2.3.1.

A \subset X とするとき、

A^{c} \overset{\mathrm{def}}{=} \{ x \in X \mid x \notin A \}


となります。


Ex.SetTop.2.3.2.

M = \{ 1,2,3,4,5 \},N = \{ 1,2,3,4,5,6,7 \}, A = \{ 1,2,3 \} とします。

M を全体集合として、A補集合を考えると、

A^{c} = \{ 4,5 \}

です。

一方で、N全体集合として、A補集合を考えると、

A^{c} = \{ 4,5,6,7 \}

となります。


差集合

X,Y を集合とします。X の元であって Y の元でない元の集合を XY差集合といい、X \verb|\| Y と表します。集合の記法で書くと、


Def.SetTop.2.3.3.

  X \verb|\| Y \overset{\mathrm{def}}{=}  \{ x \mid x \in X \land x \notin Y \}


となります。


Rem.1. X \verb|\| YX-Y と書く流儀もありますが、X-Y

X-Y = \{ x-y \mid x \in X,y \in Y \}

と紛らわしいので、ここでは X \verb|\| Y としておきます。



Rem.2. 補集合の場合と違って、YX部分集合である必要はありません。



Ex.SetTop.2.3.4.

X = \{ 1,2,3,4,5 \},Y= \{ 4,5,6,7,8 \} とすると、

  X \verb|\| Y= \{ 1,2,3 \}

となります。


 

集合.4へ>

<集合.2へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    大学数学概説.2 大学1、2年生レベルの科目

    微分積分学大学1、2年生で、数学科に限らず理系のかなりの割合の…

  2. 大学数学

    論理記号.3 すべての、~が存在する

    \( \forall \) すべての、任意の集合 \( X \…

  3. 大学数学

    写像.13 集合の準同型定理、引き起こされる写像

    集合の準同型定理Prop.SetTop.3.12.1.を応用す…

  4. 大学数学

    集合.13 同値類と集合の分割

    同値類同値関係 \( \sim \) で結ばれているということ…

  5. 大学数学

    論理記号.6 否定の作り方

    否定の作り方~一定のルールに則って否定を作ろう~数学において、…

  6. 大学数学

    写像.3 写像の合成

    写像の合成高校数学で合成関数というものをやったかと思いますが、…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 数学コラム

    虚数iは本当に存在しないのか?~iを作ってみた~
  2. 大学数学

    集合.5 添字集合と集合族
  3. 大学数学

    集合.6 共通集合と和集合(一般の場合)
  4. 大学数学

    写像.10 積集合の普遍性
  5. 大学数学

    集合.11 二項関係.1 順序
PAGE TOP
error: Content is protected !!