大学数学

論理記号.4 ~がただ一つ存在する、定義

\exists ! ~がただ一つ存在する

\exists で「~が存在する」ことを表しますが、この記号は存在さえすれば特にその個数についてはこだわらないものになっています。

ただ一つしか存在しないことを特に言明したいときには、\exists! を使います。!マークには「ただ一つしかないんだ」という感動と熱い想いが込められています。(嘘です)


Ex.SetTop.1.4.1.

\mathbb{R} で、実数全体の集合を表します。

「任意の実数 x に対し、x+a=0 を満たす実数 a はただ一つ存在する」という命題を考えます。この命題は真であり、わたしたちはこの a-x と書くのでした。さて、この命題を論理式で書き表すと、

\forall x \in \mathbb{R} \, \exists! a \in \mathbb{R} \mbox{ s.t.}\, x+a=0

となります。


:=, \overset{\mathrm{def}}{=},\overset{\mathrm{def}}{\Leftrightarrow} 定義

何かを定義するときに使う記号です。

等式で書ける関係のとき、AB であると定義する際に、

A := B , A \overset{\mathrm{def}}{=} B

などと書きます。

条件(命題)で書ける関係のとき、PQ であると定義する際に、

P \overset{\mathrm{def}}{\Leftrightarrow} Q

などと書きます。


Ex.SetTop.1.4.2.

「10 以下の自然数の集合を N と定義する」

これを定義の記号を使って書くと、

N := \{1,2,3,4,5,6,7,8,9,10 \}N \overset{\mathrm{def}}{=} \{1,2,3,4,5,6,7,8,9,10 \}

のように書けます。

「関数 f(x)x=a で連続であるとは、任意の \epsilon >0 に対してある \delta >0 が存在し、|x-a|< \delta を満たすすべての x に対して |f(x)-f(a)| < \epsilon が成り立つことと定義する」

これを論理記号を使って書くと、

「関数 f(x)x=a で連続である」 \overset{\mathrm{def}}{\Leftrightarrow}

\forall \epsilon >0 \, \exists \delta >0,  ( |x-a| < \delta \Rightarrow |f(x)-f(a)|< \epsilon)

のように書けます。


 

論理記号.5へ>

<論理記号.3へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    集合.8 「同一視する」という考え方

    写像を少しだけ予習一般の場合の積集合を定義するためには、写像と…

  2. 大学数学

    写像.5 像と逆像に関する演算

    像と逆像に関する演算ここでは、像と逆像に関する演算についてまと…

  3. 大学数学

    写像.3 写像の合成

    写像の合成高校数学で合成関数というものをやったかと思いますが、…

  4. 大学数学

    写像.10 積集合の普遍性

    積集合の普遍性積集合とは何かを集合と元を用いて具体的に記述する…

  5. 大学数学

    写像.11 直和の普遍性

    直和の普遍性直和とは何かを集合と元を用いて具体的に記述すること…

  6. 大学数学

    論理記号.2 否定、かつ、または、~ならば、同値記号

    \( \lnot \) 否定\( P \) を命題とすると、\…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    大学数学概説.3 大学3、4年生レベルの科目(代数)
  2. 大学数学

    論理記号.5 論理演算
  3. 大学数学

    集合.5 添字集合と集合族
  4. 大学数学

    集合.2 部分集合、べき集合
  5. 大学数学

    大学数学概説.5 大学3、4年生レベルの科目(解析)
PAGE TOP
error: Content is protected !!