大学数学

論理記号.4 ~がただ一つ存在する、定義

\exists ! ~がただ一つ存在する

\exists で「~が存在する」ことを表しますが、この記号は存在さえすれば特にその個数についてはこだわらないものになっています。

ただ一つしか存在しないことを特に言明したいときには、\exists! を使います。!マークには「ただ一つしかないんだ」という感動と熱い想いが込められています。(嘘です)


Ex.SetTop.1.4.1.

\mathbb{R} で、実数全体の集合を表します。

「任意の実数 x に対し、x+a=0 を満たす実数 a はただ一つ存在する」という命題を考えます。この命題は真であり、わたしたちはこの a-x と書くのでした。さて、この命題を論理式で書き表すと、

\forall x \in \mathbb{R} \, \exists! a \in \mathbb{R} \mbox{ s.t.}\, x+a=0

となります。


:=, \overset{\mathrm{def}}{=},\overset{\mathrm{def}}{\Leftrightarrow} 定義

何かを定義するときに使う記号です。

等式で書ける関係のとき、AB であると定義する際に、

A := B , A \overset{\mathrm{def}}{=} B

などと書きます。

条件(命題)で書ける関係のとき、PQ であると定義する際に、

P \overset{\mathrm{def}}{\Leftrightarrow} Q

などと書きます。


Ex.SetTop.1.4.2.

「10 以下の自然数の集合を N と定義する」

これを定義の記号を使って書くと、

N := \{1,2,3,4,5,6,7,8,9,10 \}N \overset{\mathrm{def}}{=} \{1,2,3,4,5,6,7,8,9,10 \}

のように書けます。

「関数 f(x)x=a で連続であるとは、任意の \epsilon >0 に対してある \delta >0 が存在し、|x-a|< \delta を満たすすべての x に対して |f(x)-f(a)| < \epsilon が成り立つことと定義する」

これを論理記号を使って書くと、

「関数 f(x)x=a で連続である」 \overset{\mathrm{def}}{\Leftrightarrow}

\forall \epsilon >0 \, \exists \delta >0,  ( |x-a| < \delta \Rightarrow |f(x)-f(a)|< \epsilon)

のように書けます。


 

論理記号.5へ>

<論理記号.3へ

記事一覧(大学数学.1)に戻る

関連記事

  1. 大学数学

    集合.19 集合の濃度.4 対角線論法と連続体濃度を持つ集合

    対角線論法集合 \( X \) のべき集合は \( 2^{X}…

  2. 大学数学

    集合.1 集合と元(要素)、よく使う集合

    大学の数学書がなかなか初学者に読めない理由いざ興味を持って大学…

  3. 大学数学

    大学数学概説.3 大学3、4年生レベルの科目(代数)

    群、環、体群、環、体は、いわゆる抽象代数学と言われる分野の基本…

  4. 大学数学

    写像.1 写像の定義

    今回から写像についてやっていきます写像は関数を一般化した概念で…

  5. 大学数学

    写像.6 標準的な写像の例

    標準的な写像の例今回はいくつかの標準的な写像について例を挙げて…

  6. 大学数学

    集合.7 積集合(n個の場合)

    積集合( \(n \) 個の場合)例えば、\( x,y \in…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

アーカイブ

  1. 大学数学

    集合.7 積集合(n個の場合)
  2. 大学数学

    写像.3 写像の合成
  3. 大学数学

    集合.9 積集合(一般の場合)
  4. 大学数学

    集合.14 商集合
  5. 大学数学

    集合.10 直和(非交和、無縁和)
PAGE TOP
error: Content is protected !!